Alternative Calibration Examination

1/21/2020

Conclusions

- Alternative calibrations are equivalent to or better in quality than CPG calibration when looking at the SPAF metric, MLE metric, and dynamic time series compared to data
- Alternative calibrations can result in different results within long-term projections
- High quality calibrations were achieved both Kow-Constant runs and Kow-Variable runs

Conclusions (2)

- Model parameters varied widely across optimal calibrations, suggesting a unique "best" parameterization does not exist.
- Biotic data averaging techniques have little impact on model calibrations
 - e.g. whether to include fillet data with conversions or whether to include organisms caught near to but not within a reach
 - even when the model was calibrated to these alternative central tendencies, time-series model results looked quite similar

Runs Completed

- CPG Calibration
- Optimize SPAF to Priority Species (SPAF P)
 - with and without holding Kow Constant
- Optimize SPAF for all Species (SPAF A)
 - with and without holding Kow Constant
- Optimize Maximum Likelihood (MLE)
 - with and without holding Kow Constant
- All runs were performed twice using EPA and CPG biotic data management

Runs completed and metrics

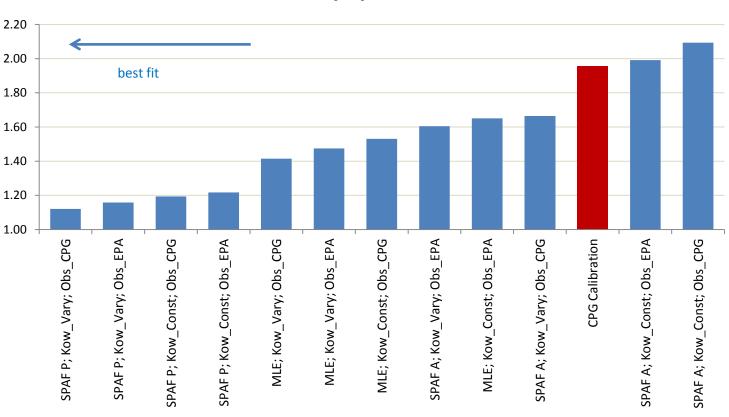
Optimizer Goal	Log Kow	Biotic Data Management	Avg. Priority SPAF	Avg SPAF, All Orgs.	Log Likelihood
MLE	Vary	CPG	1.41	3.51	-246.35
MLE	Const	CPG	1.53	3.92	-333.97
SPAF P	Vary	CPG	1.12	5.13	-1182.30
SPAF P	Const	CPG	1.19	5.96	-1199.12
SPAF A	Vary	CPG	1.66	2.32	-381.00
SPAF A	Const	CPG	2.09	2.69	-679.01
N/A	Const	CPG	1.96	4.74	-834.10
MLE	Vary	EPA	1.47	3.20	-315.08
MLE	Const	EPA	1.65	3.35	-355.50
SPAF P	Vary	EPA	1.16	4.99	-605.39
SPAF P	Const	EPA	1.22	5.53	-704.72
SPAF A	Vary	EPA	1.60	2.17	-421.55
SPAF A	Const	EPA	1.99	2.53	-627.56

SPAFs for priority Species

Model produced very low SPAFs for priority species when Kow was varied

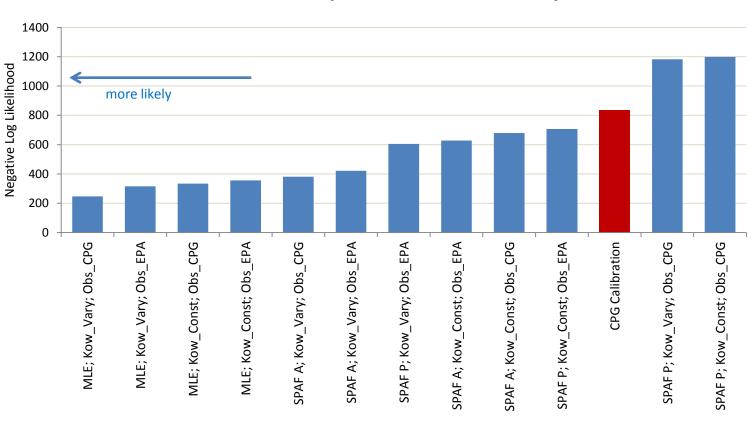
23	378 TCD	D	Tetra CB				
RM 0-6	RM 6-14.7	RM 14.7-Dam	RM 0-6	RM 6-14.7	RM 14.7-Dam		
	26.9	17.6		8.6	12.5		
31.5			15.1				
	1.1			-1.4			
-1.8	-1.0	-14.9	1.1	1.0	1.0		
-5.0	-1.0	-2.1	-2.1	-1.0	1.3		
-1.5	1.5	-15.7	-1.1	1.2	1.4		
	-1.0	-3.2		-1.2	2.1		
-5.2	-1.0	-42.7	-2.4	1.2	1.0		
-1.2	1.3	-8.2	-1.1	-1.0	1.6		
-1.2	-1.0		-1.7	-1.0			
	1.0	-2.4		1.0	-1.5		
2.6	1.1	12.8	1.6	1.1	1.4		
	1.16			1.09			

DEP (Invert)
FF (Invert)
DET (Invert)
C/O (Invert)
Small FF fish
Small forage fish
Small American eel
Blue crab
Carp
Catfish
White perch
Large American Eel
Bass
Average All
Average Priority

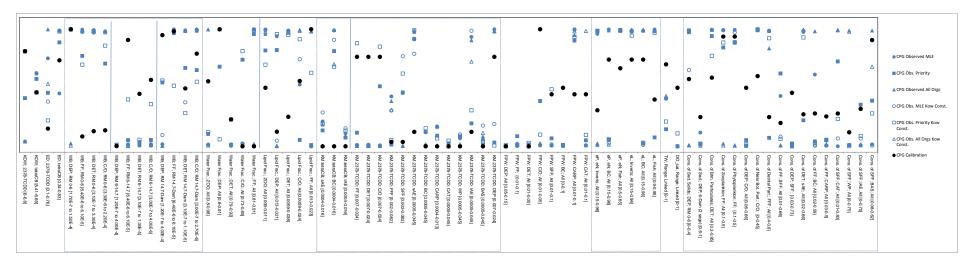

SPAFs for priority Species – Kow Const.

Model also produced low SPAFs for priority species when Kow was constant

	2378 TCDD			Tetra CB			
	RM 0-6	RM 6-14.7	RM 14.7-Dam	RM 0-6	RM 6-14.7	RM 14.7-Dam	
DEP (Invert)		37.3	19.5		8.3	11.6	
FF (Invert)							
DET (Invert)							
C/O (Invert)	38.5			13.8			
Small FF fish		1.1			-1.4		
Small forage fish	-2.0	-1.0	-19.2	1.0	1.0	-1.1	
Small American eel	-4.8	1.0	-1.9	-2.0	-1.0	1.3	
Blue crab	-1.7	1.6	-18.8	-1.2	1.3	1.3	
Carp		-1.0	-3.9		-1.4	1.6	
Catfish	-5.6	1.0	-55.2	-2.8	1.1	-1.1	
White perch	-1.5	1.5	-9.8	-1.4	-1.1	1.3	
Large American Eel	-1.5	-1.0		-1.8	1.0		
Bass		1.0	-3.2		-1.1	-1.7	
Average All	2.8	1.1	16.0	1.7	1.2	1.3	
Average Priority		1.22			1.16		


SPAF for Priority Species

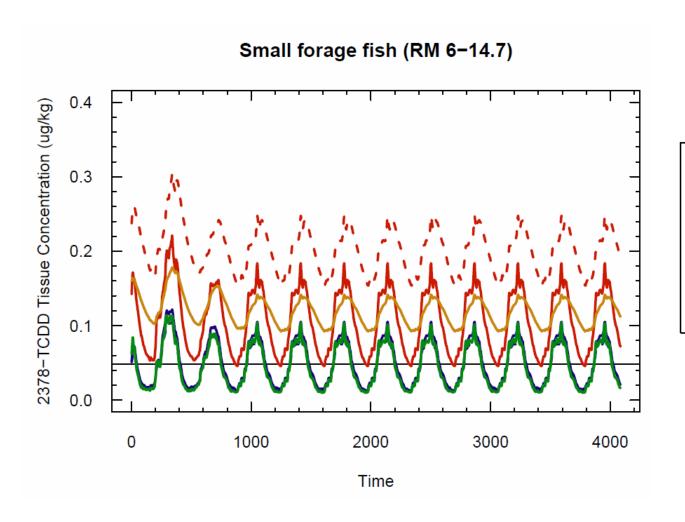
Priority Species SPAF


Maximum Likelihood for all Biotic Data

Likeliness Model Represents Central Tendency of Data

Parameter Results

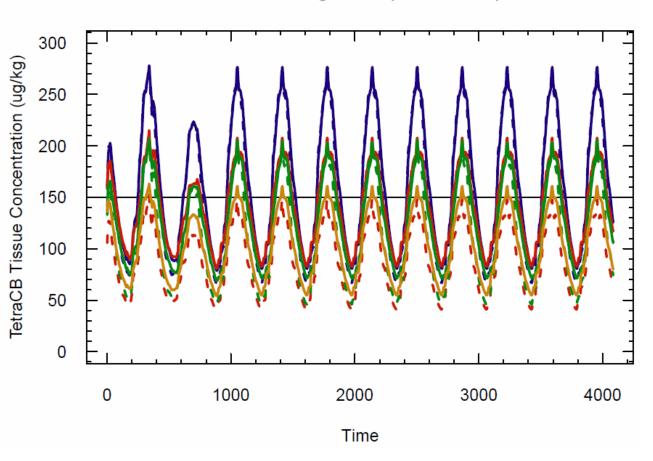
- all parameters are shown plotted against their uncertainty ranges
 - the five calibrations are "CPG Calibration," "optimized to MLE,"
 "optimized to SPAF priority," and the two optimizations holding Kow Constant. (Used CPG biotic-data central tendencies.)
- a birds eye view suggests significant variation in most parameters
- even in these five "quality" calibrations, parameters can vary quite a bit
- i.e. no unique model calibration

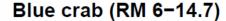

Time Series Results

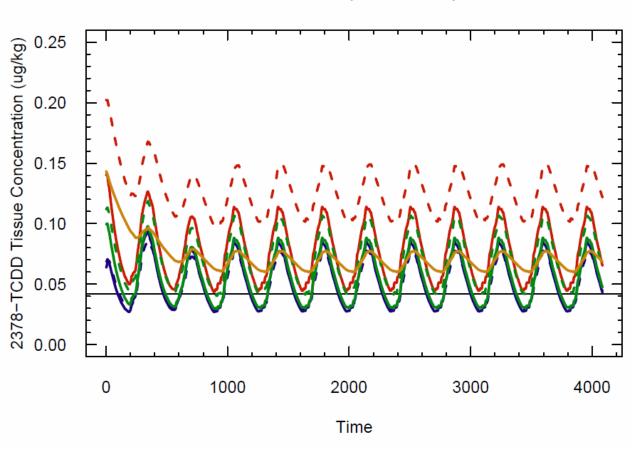
- Alternative calibrations were tested in the kinetic model
- The original 2007-2010 time series was extended to 2018 by repeating the last year
 - September of 2009-September 2010
 - consistent with 2010 fish collection dates
 - this was done to examine model behavior over a long term run – i.e.
- CPG kinetic-model tests initialized organisms using observed biotic data
 - initializing the model to observed data provides a less robust test of the model calibration
 - in these runs, biota were initialized using steady-state model results

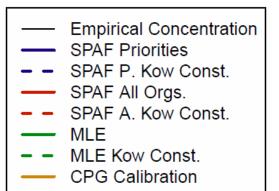
Time Series Conclusions

- Optimized calibrations seem to generally outperform the CPG calibration in the timeseries runs
- The optimization goal has a greater impact on model predictions than the choice of whether to vary Kow or not

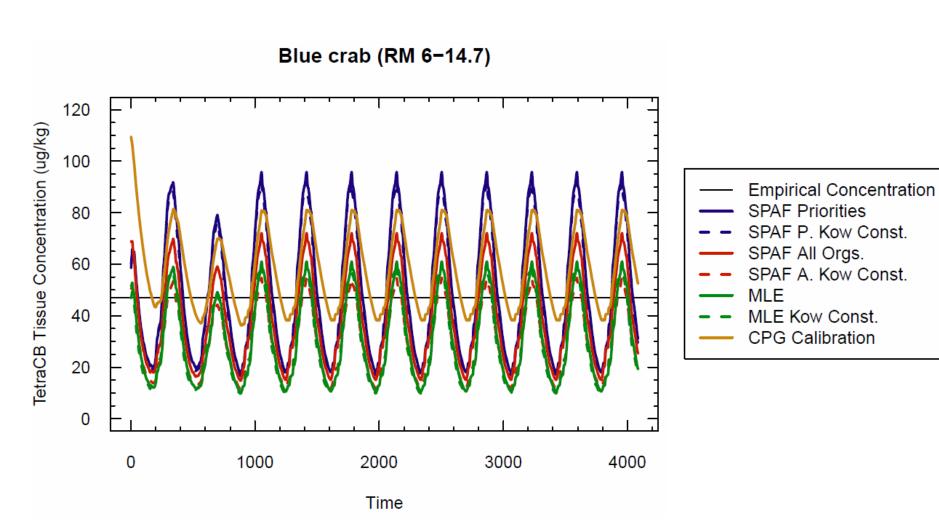

2,3,7,8 TCDD in forage fish

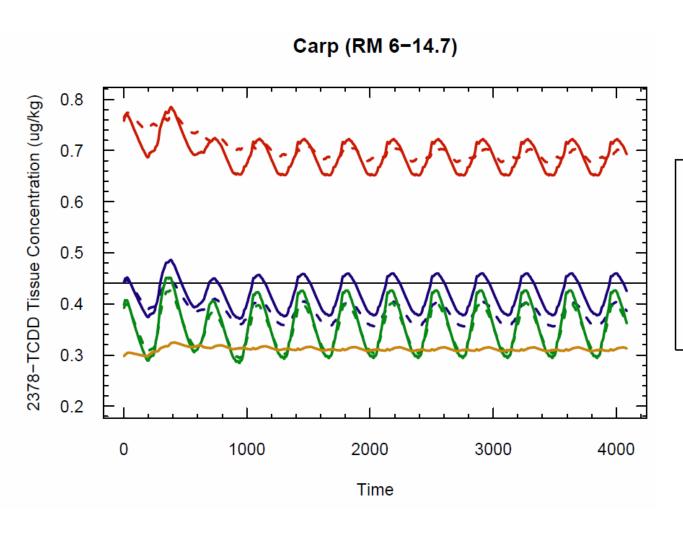

Tetra CB in forage fish



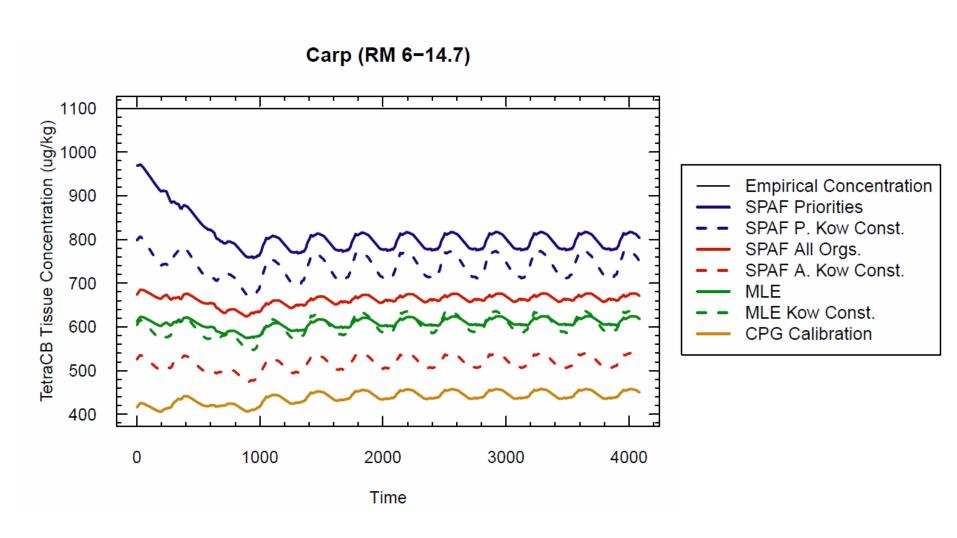


Empirical Concentration
SPAF Priorities
SPAF P. Kow Const.
SPAF All Orgs.
SPAF A. Kow Const.
MLE
MLE Kow Const.
CPG Calibration


2,3,7,8 TCDD in blue crab

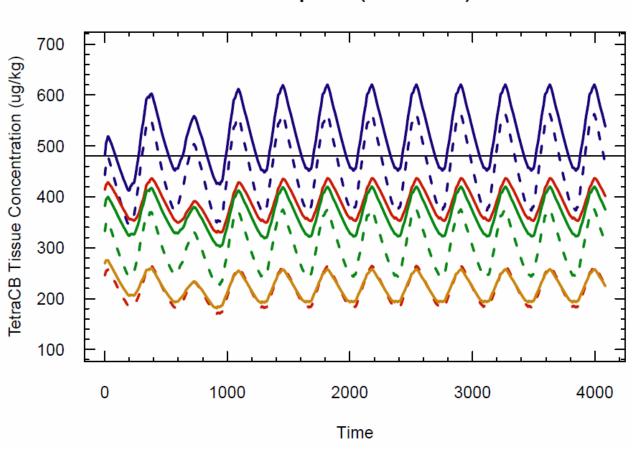


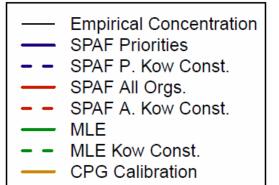
Tetra CB in blue crab



2,3,7,8 TCDD in carp

Tetra CB in carp


2,3,7,8 TCDD in white perch



Tetra CB in white perch

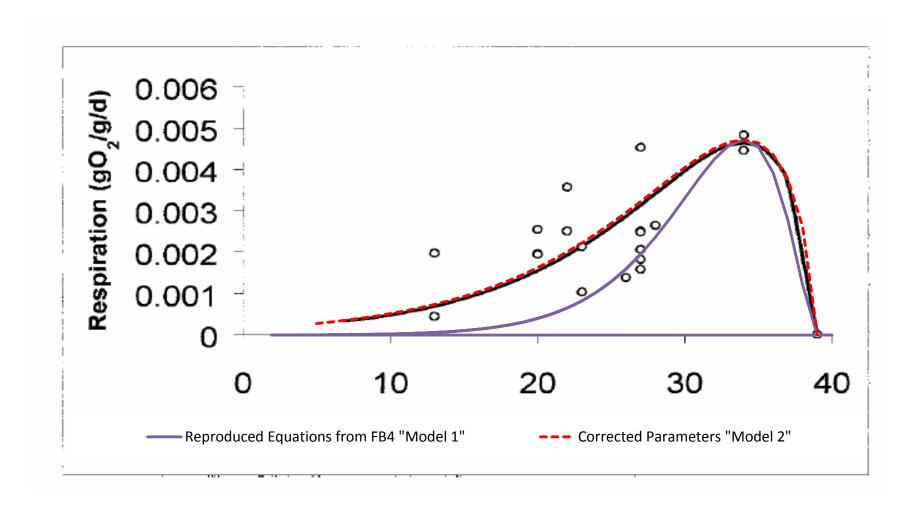
White perch (RM 6-14.7)

Parameter observations

- Kow
 - optimizer prefers lower Kow for 2378 TCDD (6.05 to 6.5)
 - prefers higher Kow for Tetra CB (6.15 to 6.3)
- ED
 - optimizer prefers higher ED for 2378 TCDD (0.25 to 0.75)
 - mixed results on Tetra CB
- Weights
 - invertebrate weights vary by reach
 - this provides a reach-specific "dial" to turn up or down contaminant concentrations
 - Original EPA optimizations did not vary invertebrate weights by reach for this reason
 - in general, in RM 0-6 higher weights are preferred (not DEP)
 - in RM 6-14.7 lower weights are preferred

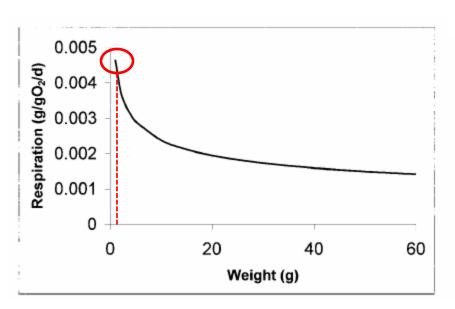
Parameter observations (cont.)

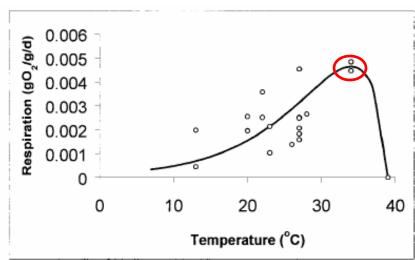
- Water Fraction and Lipid Fraction
 - no consistent pattern
- Metabolism varies by organism
 - for Tetra CB, higher KM for blue crab, lower for eel
 - for 2,3,7,8 TCDD Mixed Results
 - higher KMs for forage fish, small and large eels
 - lower KMs for carp, catfish, white perch, blue crab
- Fraction Pore Water
 - generally mixed, except high exposure for carp
- Water Temperature
 - somewhat lower than CPG calibration is optimal


Parameter observations (diet)

- Optimizer results agree that for best calibration:
 - DEP, RM 6-Dam, consumes lower sediment
 - closer to 60% than 100%
 - DET consumes higher bottom particulates
 - closer to 95% than 20%
 - C/O consumes lower DEP
 - closer to 60% than 6%
 - Small Forage Fish consumes lower DEP
 - closer to 3% than 73%
 - Carp consumes lower filter feeder
 - closer to 3% than 50%.

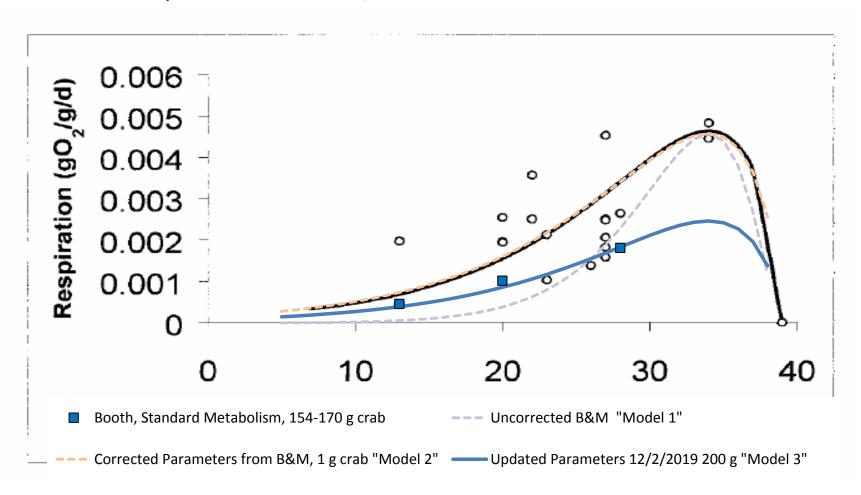
Blue Crab Bioenergetics Update


- Parameter error found in literature paper used for blue-crab bioenergetics
 - Brylawski and Miller (2003)
 - Published parameters "Model 1"
- Update was sent in September of 2019
 - Updated parameters "Model 2"
- Further refinements to report here
 - Memo update 1-21-2020
 - Adult blue-crab model -- "Model 3"


Original parameter error discovered in September 2019

Further refinement

 Comparing Figure 3 and Figure 4, one can see that the model presented in Figure 4 is for a ~1-gram crab



Need a model for 140-170 g crab

Proposed Updated Model

"Model 3" increases Blue-Crab contaminant predictions by ~20% compared to "Model 1," which is used in CPG calibration

SPAFs for priority Species

The Alt Calibration used "Model 2"

Model produced very low SPAFs for priority species when Kow was varied

	23	378 TCDD		Tetra Cl		
	RM 0-6	RM 6-14.7	RM 14.7-Dam	RM 0-6	RM 6-14.7	RM 14.7-Dam
DEP (Invert)		26.9	17.6		8.6	12.5
FF (Invert)						
DET (Invert)						
C/O (Invert)	31.5			15.1		
Small FF fish		1.1			-1.4	
Small forage fish	-1.8	-1.0	-14.9	1.1	1.0	1.0
Small American eel	-5.0	-1.0	-2.1	-2.1	-1.0	1.3
Blue crab	-1.5	1.5	-15.7	-1.1	1.2	1.4
Carp		-1.0	-3.2		-1.2	2.1
Catfish	-5.2	-1.0	-42.7	-2.4	1.2	1.0
White perch	-1.2	1.3	-8.2	-1.1	-1.0	1.6
Large American Eel	-1.2	-1.0		-1.7	-1.0	
Bass		1.0	-2.4		1.0	-1.5
Average All	2.6	1.1	12.8	1.6	1.1	1.4
Average Priority		1.16			1.09	

SPAFs for priority Species

(Same parameters but with Blue Crab "Model 3")

Very small differences, blue crab calibration seems improved overall. Alt Calibration was not significantly affected by using "Model 2" vs "3"

	2378 TCDD			Tetra CB			
	RM 0-6	RM 6-14.7	RM 14.7-Dam	RM 0-6	RM 6-14.7	RM 14.7-Dam	
DEP (Invert)		26.9	17.6		8.6	12.5	
FF (Invert)							
DET (Invert)							
C/O (Invert)	31.5			15.1			
Small FF fish		1.1			-1.4		
Small forage fish	-1.8	-1.0	-14.9	1.1	1.0	1.0	
Small American eel	-5.0	-1.0	-2.1	-2.1	-1.0	1.3	
Blue crab	-1.6	1.4	-17.0	-1.2	1.1	1.2	<
Carp		-1.0	-3.2		-1.2	2.1	
Catfish	-5.2	-1.0	-42.7	-2.4	1.2	1.0	
White perch	-1.2	1.3	-8.2	-1.1	-1.0	1.6	
Large American Eel	-1.2	-1.0		-1.7	-1.0		
Bass		1.0	-2.4		1.0	-1.5	
Average All	2.7	1.1	12.9	1.6	1.1	1.4	
Average Priority		1.15			1.08		←

Use of Alt. Calibration Analysis

Several options:

- Use one of the alt. calibration runs as primary calibration improved SPAFs and other calibration metrics
- Or -- carry the set of runs forward as alt. calibration, uncert-analysis

CPG Calibration

- Fix the kinetic-model initialization problem
 - Do not initialize the model with observed data
- Fix the blue-crab bioenergetics issue
- Use some of the parameter observations to improve calibration?